A 2-D Discrete Cubic Chaotic Mapping with Symmetry

Una cartografía caótica cúbica discreta con simetría

Authors

  • M. Mammeri

DOI:

https://doi.org/10.46932/sfjdv2n4-012

Keywords:

2-D symmetry map, cubic map, symmetry-breaking bifurcation, Hopf bifurcation, symmetric attractors

Abstract

In the theoretical research of chaotic dynamical system, the different type of bifurcations is a very interesting powerful tool for analyzing the qualitative behavior of chaotic dynamical system; this short paper is devoted to analysis of a simple 2-D symmetry discrete chaotic map with quadratic and cubic nonlinearities. The dynamical behaviors of the map are investigated by mathematical analysis and simulated numerically using package of Matlab . We compute numerically the bifurcation diagram and largest Lyapunov exponent and phase portraits. The research results indicate that there are interesting nonlinear physical phenomena in this simple 2-D symmetry discrete cubic map, such as symmetry bifurcation, Hopf bifurcation, symmetry breaking bifurcation and identical symmetric attractors. The important nonlinear physical phenomena obtained in this paper would benefit the study of the cubic chaotic map and the development of the theory of chaotic discrete dynamical systems.

 

En la investigación teórica de los sistemas dinámicos caóticos, los diferentes tipos de bifurcaciones son una herramienta poderosa muy interesante para analizar el comportamiento cualitativo de los sistemas dinámicos caóticos; este breve artículo está dedicado al análisis de un mapa caótico discreto de simetría bidimensional simple con no linealidades cuadráticas y cúbicas. Los comportamientos dinámicos del mapa se investigan mediante análisis matemático y se simulan numéricamente utilizando el paquete de Matlab . Calculamos numéricamente el diagrama de bifurcación y el mayor exponente de Lyapunov y los retratos de fase. Los resultados de la investigación indican que existen interesantes fenómenos físicos no lineales en este sencillo mapa cúbico discreto de simetría 2-D, como la bifurcación de simetría, la bifurcación de Hopf, la bifurcación de ruptura de simetría y los atractores simétricos idénticos. Los importantes fenómenos físicos no lineales obtenidos en este trabajo beneficiarían el estudio del mapa cúbico caótico y el desarrollo de la teoría de los sistemas dinámicos discretos caóticos.

Published

2021-08-15